MakeItFrom.com
Menu (ESC)

EN 1.4988 Stainless Steel vs. N06455 Nickel

EN 1.4988 stainless steel belongs to the iron alloys classification, while N06455 nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4988 stainless steel and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
47
Fatigue Strength, MPa 230
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
82
Shear Strength, MPa 430
550
Tensile Strength: Ultimate (UTS), MPa 640
780
Tensile Strength: Yield (Proof), MPa 290
330

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 920
960
Melting Completion (Liquidus), °C 1450
1510
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 15
10
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
65
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 6.0
12
Embodied Energy, MJ/kg 89
160
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
300
Resilience: Unit (Modulus of Resilience), kJ/m3 210
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 4.0
2.7
Thermal Shock Resistance, points 14
24

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.015
Chromium (Cr), % 15.5 to 17.5
14 to 18
Cobalt (Co), % 0
0 to 2.0
Iron (Fe), % 62.1 to 69.5
0 to 3.0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 1.1 to 1.5
14 to 17
Nickel (Ni), % 12.5 to 14.5
58.1 to 72
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 0.080
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.7
Vanadium (V), % 0.6 to 0.85
0