EN 1.5023 Steel vs. Grade 250 Maraging Steel
Both EN 1.5023 steel and grade 250 maraging steel are iron alloys. They have 69% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.
For each property being compared, the top bar is EN 1.5023 steel and the bottom bar is grade 250 maraging steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Poisson's Ratio | 0.29 | |
0.3 |
Shear Modulus, GPa | 72 | |
75 |
Tensile Strength: Ultimate (UTS), MPa | 570 to 1860 | |
970 to 1800 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
270 |
Melting Completion (Liquidus), °C | 1440 | |
1480 |
Melting Onset (Solidus), °C | 1400 | |
1430 |
Specific Heat Capacity, J/kg-K | 480 | |
450 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
32 |
Density, g/cm3 | 7.7 | |
8.2 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
4.9 |
Embodied Energy, MJ/kg | 19 | |
65 |
Embodied Water, L/kg | 45 | |
140 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
23 |
Strength to Weight: Axial, points | 21 to 67 | |
33 to 61 |
Strength to Weight: Bending, points | 20 to 43 | |
26 to 40 |
Thermal Shock Resistance, points | 17 to 56 | |
29 to 54 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.050 to 0.15 |
Boron (B), % | 0 | |
0 to 0.0030 |
Calcium (Ca), % | 0 | |
0 to 0.050 |
Carbon (C), % | 0.35 to 0.42 | |
0 to 0.030 |
Cobalt (Co), % | 0 | |
7.0 to 8.5 |
Iron (Fe), % | 96.9 to 97.7 | |
66.3 to 71.1 |
Manganese (Mn), % | 0.5 to 0.8 | |
0 to 0.1 |
Molybdenum (Mo), % | 0 | |
4.6 to 5.2 |
Nickel (Ni), % | 0 | |
17 to 19 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.010 |
Silicon (Si), % | 1.5 to 1.8 | |
0 to 0.1 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.010 |
Titanium (Ti), % | 0 | |
0.3 to 0.5 |
Zirconium (Zr), % | 0 | |
0 to 0.020 |