MakeItFrom.com
Menu (ESC)

EN 1.5024 Steel vs. EN AC-51200 Aluminum

EN 1.5024 steel belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5024 steel and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 470
80
Elastic (Young's, Tensile) Modulus, GPa 190
67
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
25
Tensile Strength: Ultimate (UTS), MPa 670 to 1930
220

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 50
92
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
74

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.4
9.6
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 45
1150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 24 to 69
24
Strength to Weight: Bending, points 22 to 45
31
Thermal Diffusivity, mm2/s 14
39
Thermal Shock Resistance, points 20 to 58
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0.42 to 0.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 96.7 to 97.6
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0.5 to 0.8
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.5 to 2.0
0 to 2.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15