MakeItFrom.com
Menu (ESC)

EN 1.5024 Steel vs. S40930 Stainless Steel

Both EN 1.5024 steel and S40930 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.5024 steel and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 470
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
75
Tensile Strength: Ultimate (UTS), MPa 670 to 1930
430

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 400
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 50
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 19
32
Embodied Water, L/kg 45
94

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24 to 69
16
Strength to Weight: Bending, points 22 to 45
16
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 20 to 58
16

Alloy Composition

Carbon (C), % 0.42 to 0.5
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Iron (Fe), % 96.7 to 97.6
84.7 to 89.4
Manganese (Mn), % 0.5 to 0.8
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 1.5 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0.050 to 0.2