MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. C355.0 Aluminum

EN 1.5113 steel belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 270
86 to 90
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 11 to 18
2.7 to 3.8
Fatigue Strength, MPa 220 to 470
76 to 84
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 580 to 900
290 to 310
Tensile Strength: Yield (Proof), MPa 320 to 770
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 260
470
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1450
620
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 52
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
39
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 48
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 21 to 32
30 to 32
Strength to Weight: Bending, points 20 to 27
36 to 37
Thermal Diffusivity, mm2/s 14
60
Thermal Shock Resistance, points 17 to 26
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 97 to 97.5
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 1.6 to 1.8
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.9 to 1.1
4.5 to 5.5
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15