MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. ISO-WD32250 Magnesium

EN 1.5113 steel belongs to the iron alloys classification, while ISO-WD32250 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is ISO-WD32250 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
45
Elongation at Break, % 11 to 18
4.5 to 8.6
Fatigue Strength, MPa 220 to 470
170 to 210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
17
Shear Strength, MPa 360 to 540
180 to 190
Tensile Strength: Ultimate (UTS), MPa 580 to 900
310 to 330
Tensile Strength: Yield (Proof), MPa 320 to 770
240 to 290

Thermal Properties

Latent Heat of Fusion, J/g 260
340
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 480
980
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 13
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
13
Density, g/cm3 7.8
1.8
Embodied Carbon, kg CO2/kg material 1.4
24
Embodied Energy, MJ/kg 19
160
Embodied Water, L/kg 48
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
14 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
630 to 930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
67
Strength to Weight: Axial, points 21 to 32
49 to 51
Strength to Weight: Bending, points 20 to 27
58 to 60
Thermal Diffusivity, mm2/s 14
72
Thermal Shock Resistance, points 17 to 26
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.1
0
Iron (Fe), % 97 to 97.5
0
Magnesium (Mg), % 0
94.9 to 97.1
Manganese (Mn), % 1.6 to 1.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.9 to 1.1
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
2.5 to 4.0
Zirconium (Zr), % 0
0.45 to 0.8
Residuals, % 0
0 to 0.3