MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. C83400 Brass

EN 1.5113 steel belongs to the iron alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 18
30
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 580 to 900
240
Tensile Strength: Yield (Proof), MPa 320 to 770
69

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 52
190
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
44
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
46

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 48
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
55
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 32
7.7
Strength to Weight: Bending, points 20 to 27
9.9
Thermal Diffusivity, mm2/s 14
57
Thermal Shock Resistance, points 17 to 26
8.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
88 to 92
Iron (Fe), % 97 to 97.5
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 1.6 to 1.8
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.9 to 1.1
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7