MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. C84400 Valve Metal

EN 1.5113 steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 18
19
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 580 to 900
230
Tensile Strength: Yield (Proof), MPa 320 to 770
110

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 52
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
29
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
46
Embodied Water, L/kg 48
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
36
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
58
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21 to 32
7.2
Strength to Weight: Bending, points 20 to 27
9.4
Thermal Diffusivity, mm2/s 14
22
Thermal Shock Resistance, points 17 to 26
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 97 to 97.5
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 1.6 to 1.8
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0.9 to 1.1
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7