MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. C96400 Copper-nickel

EN 1.5113 steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 11 to 18
25
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
51
Tensile Strength: Ultimate (UTS), MPa 580 to 900
490
Tensile Strength: Yield (Proof), MPa 320 to 770
260

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 400
260
Melting Completion (Liquidus), °C 1450
1240
Melting Onset (Solidus), °C 1410
1170
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 52
28
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
5.9
Embodied Energy, MJ/kg 19
87
Embodied Water, L/kg 48
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
100
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 32
15
Strength to Weight: Bending, points 20 to 27
16
Thermal Diffusivity, mm2/s 14
7.8
Thermal Shock Resistance, points 17 to 26
17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Copper (Cu), % 0
62.3 to 71.3
Iron (Fe), % 97 to 97.5
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 1.6 to 1.8
0 to 1.5
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.9 to 1.1
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.020
Residuals, % 0
0 to 0.5