MakeItFrom.com
Menu (ESC)

EN 1.5113 Steel vs. N12160 Nickel

EN 1.5113 steel belongs to the iron alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5113 steel and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11 to 18
45
Fatigue Strength, MPa 220 to 470
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
80
Shear Strength, MPa 360 to 540
500
Tensile Strength: Ultimate (UTS), MPa 580 to 900
710
Tensile Strength: Yield (Proof), MPa 320 to 770
270

Thermal Properties

Latent Heat of Fusion, J/g 260
360
Maximum Temperature: Mechanical, °C 400
1060
Melting Completion (Liquidus), °C 1450
1330
Melting Onset (Solidus), °C 1410
1280
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 52
11
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
90
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
8.5
Embodied Energy, MJ/kg 19
120
Embodied Water, L/kg 48
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 96
260
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 1570
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 32
24
Strength to Weight: Bending, points 20 to 27
22
Thermal Diffusivity, mm2/s 14
2.8
Thermal Shock Resistance, points 17 to 26
19

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
27 to 33
Iron (Fe), % 97 to 97.5
0 to 3.5
Manganese (Mn), % 1.6 to 1.8
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.9 to 1.1
2.4 to 3.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0