MakeItFrom.com
Menu (ESC)

EN 1.5402 Steel vs. S35135 Stainless Steel

Both EN 1.5402 steel and S35135 stainless steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.5402 steel and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
34
Fatigue Strength, MPa 260
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 370
390
Tensile Strength: Ultimate (UTS), MPa 580
590
Tensile Strength: Yield (Proof), MPa 370
230

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1470
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
37
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.7
6.8
Embodied Energy, MJ/kg 22
94
Embodied Water, L/kg 49
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 360
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
19
Thermal Shock Resistance, points 17
13

Alloy Composition

Carbon (C), % 0 to 0.18
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 97.3 to 98.7
28.3 to 45
Manganese (Mn), % 0.9 to 1.4
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.6
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.4
0.6 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0
Vanadium (V), % 0.040 to 0.080
0