EN 1.5408 Steel vs. Grade 4 Titanium
EN 1.5408 steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.
For each property being compared, the top bar is EN 1.5408 steel and the bottom bar is grade 4 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 140 to 160 | |
200 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Poisson's Ratio | 0.29 | |
0.32 |
Reduction in Area, % | 64 to 69 | |
28 |
Shear Modulus, GPa | 73 | |
41 |
Tensile Strength: Ultimate (UTS), MPa | 460 to 1620 | |
640 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
420 |
Maximum Temperature: Mechanical, °C | 400 | |
320 |
Melting Completion (Liquidus), °C | 1460 | |
1660 |
Melting Onset (Solidus), °C | 1420 | |
1610 |
Specific Heat Capacity, J/kg-K | 470 | |
540 |
Thermal Conductivity, W/m-K | 48 | |
19 |
Thermal Expansion, µm/m-K | 13 | |
9.4 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.1 | |
3.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.2 | |
6.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.0 | |
37 |
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
31 |
Embodied Energy, MJ/kg | 19 | |
500 |
Embodied Water, L/kg | 48 | |
110 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 16 to 57 | |
40 |
Strength to Weight: Bending, points | 17 to 39 | |
37 |
Thermal Diffusivity, mm2/s | 13 | |
7.6 |
Thermal Shock Resistance, points | 13 to 48 | |
46 |
Alloy Composition
Boron (B), % | 0.00080 to 0.0050 | |
0 |
Carbon (C), % | 0.28 to 0.32 | |
0 to 0.080 |
Chromium (Cr), % | 0 to 0.3 | |
0 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 97.7 to 98.8 | |
0 to 0.5 |
Manganese (Mn), % | 0.8 to 1.0 | |
0 |
Molybdenum (Mo), % | 0.080 to 0.12 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.050 |
Oxygen (O), % | 0 | |
0 to 0.4 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0 to 0.3 | |
0 |
Sulfur (S), % | 0 to 0.025 | |
0 |
Titanium (Ti), % | 0 | |
98.6 to 100 |
Residuals, % | 0 | |
0 to 0.4 |