MakeItFrom.com
Menu (ESC)

EN 1.5410 Steel vs. EN 1.0566 Steel

Both EN 1.5410 steel and EN 1.0566 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.5410 steel and the bottom bar is EN 1.0566 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 190
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 25
24
Fatigue Strength, MPa 290 to 330
270
Impact Strength: V-Notched Charpy, J 67 to 68
79
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 560 to 620
550
Tensile Strength: Yield (Proof), MPa 400 to 480
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.6
Embodied Energy, MJ/kg 22
22
Embodied Water, L/kg 49
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 610
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 22
19
Strength to Weight: Bending, points 19 to 21
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 16 to 18
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.12
0 to 0.18
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 96.9 to 98.6
96.2 to 98.9
Manganese (Mn), % 1.2 to 1.8
1.1 to 1.7
Molybdenum (Mo), % 0.2 to 0.4
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0.050 to 0.1
0 to 0.1