MakeItFrom.com
Menu (ESC)

EN 1.5410 Steel vs. CC333G Bronze

EN 1.5410 steel belongs to the iron alloys classification, while CC333G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5410 steel and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 190
170
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20 to 25
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 560 to 620
710
Tensile Strength: Yield (Proof), MPa 400 to 480
310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 51
38
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.7
3.5
Embodied Energy, MJ/kg 22
56
Embodied Water, L/kg 49
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
75
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 610
410
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20 to 22
24
Strength to Weight: Bending, points 19 to 21
21
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 16 to 18
24

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0
76 to 83
Iron (Fe), % 96.9 to 98.6
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 1.2 to 1.8
0 to 3.0
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0
3.7 to 6.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0.050 to 0.1
0
Zinc (Zn), % 0
0 to 0.5