MakeItFrom.com
Menu (ESC)

EN 1.5410 Steel vs. Grade 21 Titanium

EN 1.5410 steel belongs to the iron alloys classification, while grade 21 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5410 steel and the bottom bar is grade 21 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 20 to 25
9.0 to 17
Fatigue Strength, MPa 290 to 330
550 to 660
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
51
Tensile Strength: Ultimate (UTS), MPa 560 to 620
890 to 1340
Tensile Strength: Yield (Proof), MPa 400 to 480
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1460
1740
Melting Onset (Solidus), °C 1420
1690
Specific Heat Capacity, J/kg-K 470
500
Thermal Conductivity, W/m-K 51
7.5
Thermal Expansion, µm/m-K 13
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
60
Density, g/cm3 7.8
5.4
Embodied Carbon, kg CO2/kg material 1.7
32
Embodied Energy, MJ/kg 22
490
Embodied Water, L/kg 49
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
110 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 610
2760 to 5010
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
32
Strength to Weight: Axial, points 20 to 22
46 to 69
Strength to Weight: Bending, points 19 to 21
38 to 50
Thermal Diffusivity, mm2/s 14
2.8
Thermal Shock Resistance, points 16 to 18
66 to 100

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.12
0 to 0.050
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.9 to 98.6
0 to 0.4
Manganese (Mn), % 1.2 to 1.8
0
Molybdenum (Mo), % 0.2 to 0.4
14 to 16
Niobium (Nb), % 0
2.2 to 3.2
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.17
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0.15 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
76 to 81.2
Vanadium (V), % 0.050 to 0.1
0
Residuals, % 0
0 to 0.4

Comparable Variants