MakeItFrom.com
Menu (ESC)

EN 1.5414 Steel vs. B443.0 Aluminum

EN 1.5414 steel belongs to the iron alloys classification, while B443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5414 steel and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
43
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
4.9
Fatigue Strength, MPa 250 to 270
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 350 to 370
110
Tensile Strength: Ultimate (UTS), MPa 550 to 580
150
Tensile Strength: Yield (Proof), MPa 350 to 380
50

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1470
620
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 44
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.6
8.0
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 50
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 370
18
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 19 to 20
15
Strength to Weight: Bending, points 19 to 20
23
Thermal Diffusivity, mm2/s 12
61
Thermal Shock Resistance, points 16 to 17
6.8

Alloy Composition

Aluminum (Al), % 0
91.9 to 95.5
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0 to 0.15
Iron (Fe), % 96.4 to 98.7
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.9 to 1.5
0 to 0.35
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.4
4.5 to 6.0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15