MakeItFrom.com
Menu (ESC)

EN 1.5418 Steel vs. 2007 Aluminum

EN 1.5418 steel belongs to the iron alloys classification, while 2007 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5418 steel and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 490 to 1780
370 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 48
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
47
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
140

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
11
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 1.5
8.0
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 47
1130

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 17 to 63
33 to 38
Strength to Weight: Bending, points 18 to 42
37 to 40
Thermal Diffusivity, mm2/s 13
48
Thermal Shock Resistance, points 14 to 53
16 to 19

Alloy Composition

Aluminum (Al), % 0
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Carbon (C), % 0.35 to 0.4
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
3.3 to 4.6
Iron (Fe), % 97.8 to 98.9
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.4 to 1.8
Manganese (Mn), % 0.6 to 0.9
0.5 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.8
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.3