EN 1.5418 Steel vs. S30615 Stainless Steel
Both EN 1.5418 steel and S30615 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is EN 1.5418 steel and the bottom bar is S30615 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
75 |
Tensile Strength: Ultimate (UTS), MPa | 490 to 1780 | |
690 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
340 |
Maximum Temperature: Mechanical, °C | 400 | |
960 |
Melting Completion (Liquidus), °C | 1460 | |
1370 |
Melting Onset (Solidus), °C | 1420 | |
1320 |
Specific Heat Capacity, J/kg-K | 470 | |
500 |
Thermal Conductivity, W/m-K | 48 | |
14 |
Thermal Expansion, µm/m-K | 13 | |
16 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.1 | |
19 |
Density, g/cm3 | 7.8 | |
7.6 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
3.7 |
Embodied Energy, MJ/kg | 19 | |
53 |
Embodied Water, L/kg | 47 | |
170 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 17 to 63 | |
25 |
Strength to Weight: Bending, points | 18 to 42 | |
23 |
Thermal Diffusivity, mm2/s | 13 | |
3.7 |
Thermal Shock Resistance, points | 14 to 53 | |
16 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.8 to 1.5 |
Carbon (C), % | 0.35 to 0.4 | |
0.16 to 0.24 |
Chromium (Cr), % | 0 | |
17 to 19.5 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 97.8 to 98.9 | |
56.7 to 65.3 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 to 2.0 |
Molybdenum (Mo), % | 0.2 to 0.3 | |
0 |
Nickel (Ni), % | 0 | |
13.5 to 16 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.030 |
Silicon (Si), % | 0 to 0.3 | |
3.2 to 4.0 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.030 |