MakeItFrom.com
Menu (ESC)

EN 1.5422 Steel vs. EN 1.7720 Steel

Both EN 1.5422 steel and EN 1.7720 steel are iron alloys. Both are furnished in the quenched and tempered condition. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5422 steel and the bottom bar is EN 1.7720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 26
19
Fatigue Strength, MPa 200
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 520
590
Tensile Strength: Yield (Proof), MPa 270
340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
410
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
2.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.6
2.2
Embodied Energy, MJ/kg 22
30
Embodied Water, L/kg 50
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
97
Resilience: Unit (Modulus of Resilience), kJ/m3 200
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.1 to 0.15
Chromium (Cr), % 0 to 0.3
0.3 to 0.5
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 96.3 to 98.6
96.6 to 98.6
Manganese (Mn), % 0.8 to 1.2
0.4 to 0.7
Molybdenum (Mo), % 0.45 to 0.65
0.4 to 0.6
Nickel (Ni), % 0 to 0.4
0 to 0.4
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.45
Sulfur (S), % 0 to 0.020
0 to 0.020
Vanadium (V), % 0 to 0.050
0.22 to 0.3