MakeItFrom.com
Menu (ESC)

EN 1.5501 Steel vs. CC752S Brass

EN 1.5501 steel belongs to the iron alloys classification, while CC752S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5501 steel and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 150
100
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 17
8.4
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 390 to 510
350
Tensile Strength: Yield (Proof), MPa 260 to 420
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 52
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
28

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 83
25
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 460
180
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 14 to 18
12
Strength to Weight: Bending, points 15 to 18
13
Thermal Diffusivity, mm2/s 14
35
Thermal Shock Resistance, points 11 to 15
12

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.13 to 0.16
0
Copper (Cu), % 0 to 0.25
61.5 to 64.5
Iron (Fe), % 98.4 to 99.269
0 to 0.3
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0.6 to 0.8
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.020
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
31.5 to 36.7