MakeItFrom.com
Menu (ESC)

EN 1.5502 Steel vs. 8176 Aluminum

EN 1.5502 steel belongs to the iron alloys classification, while 8176 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5502 steel and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 12 to 20
15
Fatigue Strength, MPa 190 to 290
59
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 280 to 330
70
Tensile Strength: Ultimate (UTS), MPa 400 to 1380
160
Tensile Strength: Yield (Proof), MPa 270 to 440
95

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 52
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
61
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
200

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.2
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 47
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 210
21
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 520
66
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 14 to 49
16
Strength to Weight: Bending, points 15 to 35
24
Thermal Diffusivity, mm2/s 14
93
Thermal Shock Resistance, points 12 to 40
7.0

Alloy Composition

Aluminum (Al), % 0
98.6 to 99.6
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 98 to 99.249
0.4 to 1.0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0.030 to 0.15
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15