MakeItFrom.com
Menu (ESC)

EN 1.5502 Steel vs. Grade 18 Titanium

EN 1.5502 steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5502 steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 20
11 to 17
Fatigue Strength, MPa 190 to 290
330 to 480
Poisson's Ratio 0.29
0.32
Reduction in Area, % 62 to 76
23
Shear Modulus, GPa 73
40
Shear Strength, MPa 280 to 330
420 to 590
Tensile Strength: Ultimate (UTS), MPa 400 to 1380
690 to 980
Tensile Strength: Yield (Proof), MPa 270 to 440
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 52
8.3
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
41
Embodied Energy, MJ/kg 19
670
Embodied Water, L/kg 47
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 210
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 520
1380 to 3110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 14 to 49
43 to 61
Strength to Weight: Bending, points 15 to 35
39 to 49
Thermal Diffusivity, mm2/s 14
3.4
Thermal Shock Resistance, points 12 to 40
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98 to 99.249
0 to 0.25
Manganese (Mn), % 0.6 to 0.9
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4