MakeItFrom.com
Menu (ESC)

EN 1.5502 Steel vs. C92500 Bronze

EN 1.5502 steel belongs to the iron alloys classification, while C92500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5502 steel and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 20
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 400 to 1380
310
Tensile Strength: Yield (Proof), MPa 270 to 440
190

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 52
63
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.4
3.7
Embodied Energy, MJ/kg 19
61
Embodied Water, L/kg 47
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 210
30
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 520
170
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 14 to 49
9.8
Strength to Weight: Bending, points 15 to 35
12
Thermal Diffusivity, mm2/s 14
20
Thermal Shock Resistance, points 12 to 40
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
85 to 88
Iron (Fe), % 98 to 99.249
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.7