MakeItFrom.com
Menu (ESC)

EN 1.5502 Steel vs. N06110 Nickel

EN 1.5502 steel belongs to the iron alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5502 steel and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 12 to 20
53
Fatigue Strength, MPa 190 to 290
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
84
Shear Strength, MPa 280 to 330
530
Tensile Strength: Ultimate (UTS), MPa 400 to 1380
730
Tensile Strength: Yield (Proof), MPa 270 to 440
330

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 400
1020
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
65
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.4
11
Embodied Energy, MJ/kg 19
160
Embodied Water, L/kg 47
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 210
320
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 520
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 14 to 49
23
Strength to Weight: Bending, points 15 to 35
21
Thermal Shock Resistance, points 12 to 40
20

Alloy Composition

Aluminum (Al), % 0
0 to 1.0
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0 to 0.15
Chromium (Cr), % 0 to 0.3
28 to 33
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 98 to 99.249
0 to 1.0
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.5
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0