MakeItFrom.com
Menu (ESC)

EN 1.5502 Steel vs. S32760 Stainless Steel

Both EN 1.5502 steel and S32760 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5502 steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 20
28
Fatigue Strength, MPa 190 to 290
450
Poisson's Ratio 0.29
0.27
Reduction in Area, % 62 to 76
51
Shear Modulus, GPa 73
80
Shear Strength, MPa 280 to 330
550
Tensile Strength: Ultimate (UTS), MPa 400 to 1380
850
Tensile Strength: Yield (Proof), MPa 270 to 440
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
4.1
Embodied Energy, MJ/kg 19
57
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 210
220
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 520
930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14 to 49
30
Strength to Weight: Bending, points 15 to 35
25
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 12 to 40
23

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0 to 0.25
0.5 to 1.0
Iron (Fe), % 98 to 99.249
57.6 to 65.8
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0