MakeItFrom.com
Menu (ESC)

EN 1.5503 Steel vs. ASTM A182 Grade F3V

Both EN 1.5503 steel and ASTM A182 grade F3V are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.5503 steel and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 17
20
Fatigue Strength, MPa 180 to 280
330
Poisson's Ratio 0.29
0.29
Reduction in Area, % 63 to 72
51
Shear Modulus, GPa 73
74
Shear Strength, MPa 270 to 320
410
Tensile Strength: Ultimate (UTS), MPa 400 to 520
660
Tensile Strength: Yield (Proof), MPa 270 to 430
470

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
470
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 18
33
Embodied Water, L/kg 46
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 81
120
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 490
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 14 to 19
23
Strength to Weight: Bending, points 15 to 18
21
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 12 to 15
19

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0.0010 to 0.0030
Carbon (C), % 0.16 to 0.2
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.4 to 99.239
94.4 to 95.7
Manganese (Mn), % 0.6 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3