MakeItFrom.com
Menu (ESC)

EN 1.5503 Steel vs. Grade 36 Titanium

EN 1.5503 steel belongs to the iron alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.5503 steel and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 17
11
Fatigue Strength, MPa 180 to 280
300
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 73
39
Shear Strength, MPa 270 to 320
320
Tensile Strength: Ultimate (UTS), MPa 400 to 520
530
Tensile Strength: Yield (Proof), MPa 270 to 430
520

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
2020
Melting Onset (Solidus), °C 1420
1950
Specific Heat Capacity, J/kg-K 470
420
Thermal Expansion, µm/m-K 13
8.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
6.3
Embodied Carbon, kg CO2/kg material 1.4
58
Embodied Energy, MJ/kg 18
920
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 81
59
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 490
1260
Stiffness to Weight: Axial, points 13
9.3
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14 to 19
23
Strength to Weight: Bending, points 15 to 18
23
Thermal Shock Resistance, points 12 to 15
45

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.16 to 0.2
0 to 0.030
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 98.4 to 99.239
0 to 0.030
Manganese (Mn), % 0.6 to 0.8
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4