MakeItFrom.com
Menu (ESC)

EN 1.5503 Steel vs. Titanium 4-4-2

EN 1.5503 steel belongs to the iron alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5503 steel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 17
10
Fatigue Strength, MPa 180 to 280
590 to 620
Poisson's Ratio 0.29
0.32
Reduction in Area, % 63 to 72
20
Shear Modulus, GPa 73
42
Shear Strength, MPa 270 to 320
690 to 750
Tensile Strength: Ultimate (UTS), MPa 400 to 520
1150 to 1250
Tensile Strength: Yield (Proof), MPa 270 to 430
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 52
6.7
Thermal Expansion, µm/m-K 13
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
39
Density, g/cm3 7.8
4.7
Embodied Carbon, kg CO2/kg material 1.4
30
Embodied Energy, MJ/kg 18
480
Embodied Water, L/kg 46
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 81
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 490
4700 to 5160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
34
Strength to Weight: Axial, points 14 to 19
68 to 74
Strength to Weight: Bending, points 15 to 18
52 to 55
Thermal Diffusivity, mm2/s 14
2.6
Thermal Shock Resistance, points 12 to 15
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.16 to 0.2
0 to 0.080
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.4 to 99.239
0 to 0.2
Manganese (Mn), % 0.6 to 0.8
0
Molybdenum (Mo), % 0
3.0 to 5.0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0.3 to 0.7
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4