MakeItFrom.com
Menu (ESC)

EN 1.5503 Steel vs. C27200 Brass

EN 1.5503 steel belongs to the iron alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5503 steel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 17
10 to 50
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Shear Strength, MPa 270 to 320
230 to 320
Tensile Strength: Ultimate (UTS), MPa 400 to 520
370 to 590
Tensile Strength: Yield (Proof), MPa 270 to 430
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
120
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
31

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
45
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 81
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 490
110 to 810
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 14 to 19
13 to 20
Strength to Weight: Bending, points 15 to 18
14 to 19
Thermal Diffusivity, mm2/s 14
37
Thermal Shock Resistance, points 12 to 15
12 to 20

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.16 to 0.2
0
Copper (Cu), % 0 to 0.25
62 to 65
Iron (Fe), % 98.4 to 99.239
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0.6 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
34.6 to 38
Residuals, % 0
0 to 0.3