MakeItFrom.com
Menu (ESC)

EN 1.5503 Steel vs. S20910 Stainless Steel

Both EN 1.5503 steel and S20910 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5503 steel and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 17
14 to 39
Fatigue Strength, MPa 180 to 280
310 to 460
Poisson's Ratio 0.29
0.28
Reduction in Area, % 63 to 72
56 to 62
Shear Modulus, GPa 73
79
Shear Strength, MPa 270 to 320
500 to 570
Tensile Strength: Ultimate (UTS), MPa 400 to 520
780 to 940
Tensile Strength: Yield (Proof), MPa 270 to 430
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1080
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
13
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
4.8
Embodied Energy, MJ/kg 18
68
Embodied Water, L/kg 46
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 81
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 490
460 to 1640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14 to 19
28 to 33
Strength to Weight: Bending, points 15 to 18
24 to 27
Thermal Diffusivity, mm2/s 14
3.6
Thermal Shock Resistance, points 12 to 15
17 to 21

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.16 to 0.2
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.4 to 99.239
52.1 to 62.1
Manganese (Mn), % 0.6 to 0.8
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3

Comparable Variants