MakeItFrom.com
Menu (ESC)

EN 1.5507 Steel vs. 5086 Aluminum

EN 1.5507 steel belongs to the iron alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5507 steel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 260
65 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 450 to 880
270 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 410
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 49
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.8
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 49
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 16 to 31
28 to 40
Strength to Weight: Bending, points 17 to 26
34 to 44
Thermal Diffusivity, mm2/s 13
52
Thermal Shock Resistance, points 13 to 26
12 to 17

Alloy Composition

Aluminum (Al), % 0.020 to 0.080
93 to 96.3
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.21 to 0.25
0
Chromium (Cr), % 0.25 to 0.35
0.050 to 0.25
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 97.8 to 98.7
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0.8 to 1.0
0.2 to 0.7
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.060
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15