MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. AISI 312 Stainless Steel

Both EN 1.5510 steel and AISI 312 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is AISI 312 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 190
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 21
28
Fatigue Strength, MPa 220 to 330
370
Poisson's Ratio 0.29
0.27
Reduction in Area, % 62 to 72
56
Shear Modulus, GPa 73
80
Shear Strength, MPa 310 to 380
510
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
780
Tensile Strength: Yield (Proof), MPa 310 to 520
510

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
17
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 47
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
190
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
640
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16 to 57
28
Strength to Weight: Bending, points 17 to 39
24
Thermal Diffusivity, mm2/s 14
4.3
Thermal Shock Resistance, points 13 to 47
21

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0 to 0.030
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 97.9 to 99.149
62.2 to 69.2
Manganese (Mn), % 0.6 to 0.9
0 to 2.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030