MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. ASTM A182 Grade F911

Both EN 1.5510 steel and ASTM A182 grade F911 are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 190
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
20
Fatigue Strength, MPa 220 to 330
350
Poisson's Ratio 0.29
0.28
Reduction in Area, % 62 to 72
46
Shear Modulus, GPa 73
76
Shear Strength, MPa 310 to 380
430
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
690
Tensile Strength: Yield (Proof), MPa 310 to 520
500

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
600
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
40
Embodied Water, L/kg 47
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
130
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 57
24
Strength to Weight: Bending, points 17 to 39
22
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 13 to 47
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0.00080 to 0.0050
0.00030 to 0.0060
Carbon (C), % 0.25 to 0.3
0.090 to 0.13
Chromium (Cr), % 0 to 0.3
8.5 to 9.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 97.9 to 99.149
86.2 to 88.9
Manganese (Mn), % 0.6 to 0.9
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.3
0.1 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010