MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. Grade C-3 Titanium

EN 1.5510 steel belongs to the iron alloys classification, while grade C-3 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is grade C-3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 190
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
13
Fatigue Strength, MPa 220 to 330
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
500
Tensile Strength: Yield (Proof), MPa 310 to 520
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 19
510
Embodied Water, L/kg 47
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
65
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 57
31
Strength to Weight: Bending, points 17 to 39
31
Thermal Diffusivity, mm2/s 14
8.5
Thermal Shock Resistance, points 13 to 47
39

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0 to 0.1
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.9 to 99.149
0 to 0.25
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4