MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. C64700 Bronze

EN 1.5510 steel belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 21
9.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 310 to 380
390
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
660
Tensile Strength: Yield (Proof), MPa 310 to 520
560

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
38

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 47
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
57
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16 to 57
21
Strength to Weight: Bending, points 17 to 39
19
Thermal Diffusivity, mm2/s 14
59
Thermal Shock Resistance, points 13 to 47
24

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
95.8 to 98
Iron (Fe), % 97.9 to 99.149
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
1.6 to 2.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0.4 to 0.8
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5