MakeItFrom.com
Menu (ESC)

EN 1.5510 Steel vs. ZK61A Magnesium

EN 1.5510 steel belongs to the iron alloys classification, while ZK61A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5510 steel and the bottom bar is ZK61A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
46
Elongation at Break, % 11 to 21
5.8 to 7.1
Fatigue Strength, MPa 220 to 330
120 to 140
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
18
Shear Strength, MPa 310 to 380
170 to 180
Tensile Strength: Ultimate (UTS), MPa 450 to 1600
290 to 310
Tensile Strength: Yield (Proof), MPa 310 to 520
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
530
Specific Heat Capacity, J/kg-K 470
960
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 13
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
29
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
13
Density, g/cm3 7.8
1.9
Embodied Carbon, kg CO2/kg material 1.4
23
Embodied Energy, MJ/kg 19
160
Embodied Water, L/kg 47
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 260
15 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 710
370 to 420
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
62
Strength to Weight: Axial, points 16 to 57
42 to 45
Strength to Weight: Bending, points 17 to 39
50 to 53
Thermal Diffusivity, mm2/s 14
65
Thermal Shock Resistance, points 13 to 47
17 to 18

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.25 to 0.3
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 97.9 to 99.149
0
Magnesium (Mg), % 0
92.1 to 93.9
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
5.5 to 6.5
Zirconium (Zr), % 0
0.6 to 1.0
Residuals, % 0
0 to 0.3