MakeItFrom.com
Menu (ESC)

EN 1.5520 Steel vs. C68400 Brass

EN 1.5520 steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5520 steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 170
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
18
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Shear Strength, MPa 290 to 340
330
Tensile Strength: Ultimate (UTS), MPa 410 to 1410
540
Tensile Strength: Yield (Proof), MPa 300 to 480
310

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 50
66
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
87
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
99

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 48
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 230
81
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 600
460
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 15 to 50
19
Strength to Weight: Bending, points 16 to 36
19
Thermal Diffusivity, mm2/s 13
21
Thermal Shock Resistance, points 12 to 41
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0.00080 to 0.0050
0.0010 to 0.030
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
59 to 64
Iron (Fe), % 97.7 to 98.9
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.9 to 1.2
0.2 to 1.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0.030 to 0.3
Silicon (Si), % 0 to 0.3
1.5 to 2.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5