MakeItFrom.com
Menu (ESC)

EN 1.5520 Steel vs. C85700 Brass

EN 1.5520 steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5520 steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 21
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 410 to 1410
310
Tensile Strength: Yield (Proof), MPa 300 to 480
110

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
910
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 50
84
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
25

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 48
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 230
41
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 600
59
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 15 to 50
11
Strength to Weight: Bending, points 16 to 36
13
Thermal Diffusivity, mm2/s 13
27
Thermal Shock Resistance, points 12 to 41
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
58 to 64
Iron (Fe), % 97.7 to 98.9
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0.9 to 1.2
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3