MakeItFrom.com
Menu (ESC)

EN 1.5522 Steel vs. EN 1.4542 Stainless Steel

Both EN 1.5522 steel and EN 1.4542 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5522 steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
5.7 to 20
Fatigue Strength, MPa 210 to 330
370 to 640
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 320 to 380
550 to 860
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
880 to 1470
Tensile Strength: Yield (Proof), MPa 300 to 520
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
860
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
39
Embodied Water, L/kg 47
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 720
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16 to 53
31 to 52
Strength to Weight: Bending, points 17 to 37
26 to 37
Thermal Diffusivity, mm2/s 14
4.3
Thermal Shock Resistance, points 13 to 44
29 to 49

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.2 to 0.24
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.25
3.0 to 5.0
Iron (Fe), % 98 to 98.9
69.6 to 79
Manganese (Mn), % 0.9 to 1.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.015