MakeItFrom.com
Menu (ESC)

EN 1.5522 Steel vs. C68400 Brass

EN 1.5522 steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5522 steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 190
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
18
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Shear Strength, MPa 320 to 380
330
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
540
Tensile Strength: Yield (Proof), MPa 300 to 520
310

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 51
66
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
87
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
99

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 47
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
81
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 720
460
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 16 to 53
19
Strength to Weight: Bending, points 17 to 37
19
Thermal Diffusivity, mm2/s 14
21
Thermal Shock Resistance, points 13 to 44
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0.00080 to 0.0050
0.0010 to 0.030
Carbon (C), % 0.2 to 0.24
0
Copper (Cu), % 0 to 0.25
59 to 64
Iron (Fe), % 98 to 98.9
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.9 to 1.2
0.2 to 1.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0.030 to 0.3
Silicon (Si), % 0 to 0.3
1.5 to 2.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5