EN 1.5525 Steel vs. AISI 301L Stainless Steel
Both EN 1.5525 steel and AISI 301L stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.5525 steel and the bottom bar is AISI 301L stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 130 to 180 | |
210 to 320 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 11 to 21 | |
22 to 50 |
Fatigue Strength, MPa | 210 to 310 | |
240 to 530 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
77 |
Shear Strength, MPa | 310 to 350 | |
440 to 660 |
Tensile Strength: Ultimate (UTS), MPa | 440 to 1440 | |
620 to 1040 |
Tensile Strength: Yield (Proof), MPa | 300 to 490 | |
250 to 790 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Maximum Temperature: Mechanical, °C | 400 | |
890 |
Melting Completion (Liquidus), °C | 1460 | |
1430 |
Melting Onset (Solidus), °C | 1420 | |
1390 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 50 | |
15 |
Thermal Expansion, µm/m-K | 13 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.1 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.2 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
13 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
2.7 |
Embodied Energy, MJ/kg | 19 | |
39 |
Embodied Water, L/kg | 48 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 44 to 240 | |
210 to 300 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 240 to 640 | |
160 to 1580 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 16 to 51 | |
22 to 37 |
Strength to Weight: Bending, points | 16 to 36 | |
21 to 29 |
Thermal Diffusivity, mm2/s | 13 | |
4.1 |
Thermal Shock Resistance, points | 13 to 42 | |
14 to 24 |
Alloy Composition
Boron (B), % | 0.00080 to 0.0050 | |
0 |
Carbon (C), % | 0.18 to 0.23 | |
0 to 0.030 |
Chromium (Cr), % | 0 to 0.3 | |
16 to 18 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 97.7 to 98.9 | |
70.7 to 78 |
Manganese (Mn), % | 0.9 to 1.2 | |
0 to 2.0 |
Nickel (Ni), % | 0 | |
6.0 to 8.0 |
Nitrogen (N), % | 0 | |
0 to 0.2 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.3 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.030 |