MakeItFrom.com
Menu (ESC)

EN 1.5525 Steel vs. AISI 405 Stainless Steel

Both EN 1.5525 steel and AISI 405 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5525 steel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
22
Fatigue Strength, MPa 210 to 310
130
Poisson's Ratio 0.29
0.28
Reduction in Area, % 62 to 73
51
Shear Modulus, GPa 73
76
Shear Strength, MPa 310 to 350
300
Tensile Strength: Ultimate (UTS), MPa 440 to 1440
470
Tensile Strength: Yield (Proof), MPa 300 to 490
200

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
820
Melting Completion (Liquidus), °C 1460
1530
Melting Onset (Solidus), °C 1420
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 19
28
Embodied Water, L/kg 48
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 240
84
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 640
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16 to 51
17
Strength to Weight: Bending, points 16 to 36
17
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 13 to 42
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.3
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.18 to 0.23
0 to 0.080
Chromium (Cr), % 0 to 0.3
11.5 to 14.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 97.7 to 98.9
82.5 to 88.4
Manganese (Mn), % 0.9 to 1.2
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030