MakeItFrom.com
Menu (ESC)

EN 1.5525 Steel vs. CC764S Brass

EN 1.5525 steel belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5525 steel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 180
160
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 440 to 1440
680
Tensile Strength: Yield (Proof), MPa 300 to 490
290

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
850
Melting Onset (Solidus), °C 1420
810
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 50
94
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
36

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
49
Embodied Water, L/kg 48
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 240
80
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 640
390
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 16 to 51
24
Strength to Weight: Bending, points 16 to 36
22
Thermal Diffusivity, mm2/s 13
30
Thermal Shock Resistance, points 13 to 42
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.18 to 0.23
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
52 to 66
Iron (Fe), % 97.7 to 98.9
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.9 to 1.2
0.3 to 4.0
Nickel (Ni), % 0
0 to 3.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
20.7 to 50.2