EN 1.5525 Steel vs. S66286 Stainless Steel
Both EN 1.5525 steel and S66286 stainless steel are iron alloys. They have 56% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.5525 steel and the bottom bar is S66286 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 11 to 21 | |
17 to 40 |
Fatigue Strength, MPa | 210 to 310 | |
240 to 410 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
75 |
Shear Strength, MPa | 310 to 350 | |
420 to 630 |
Tensile Strength: Ultimate (UTS), MPa | 440 to 1440 | |
620 to 1020 |
Tensile Strength: Yield (Proof), MPa | 300 to 490 | |
280 to 670 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
300 |
Maximum Temperature: Mechanical, °C | 400 | |
920 |
Melting Completion (Liquidus), °C | 1460 | |
1430 |
Melting Onset (Solidus), °C | 1420 | |
1370 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 50 | |
15 |
Thermal Expansion, µm/m-K | 13 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.1 | |
1.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.2 | |
2.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
26 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
6.0 |
Embodied Energy, MJ/kg | 19 | |
87 |
Embodied Water, L/kg | 48 | |
170 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 44 to 240 | |
150 to 200 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 240 to 640 | |
190 to 1150 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 16 to 51 | |
22 to 36 |
Strength to Weight: Bending, points | 16 to 36 | |
20 to 28 |
Thermal Diffusivity, mm2/s | 13 | |
4.0 |
Thermal Shock Resistance, points | 13 to 42 | |
13 to 22 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.35 |
Boron (B), % | 0.00080 to 0.0050 | |
0.0010 to 0.010 |
Carbon (C), % | 0.18 to 0.23 | |
0 to 0.080 |
Chromium (Cr), % | 0 to 0.3 | |
13.5 to 16 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 97.7 to 98.9 | |
49.1 to 59.5 |
Manganese (Mn), % | 0.9 to 1.2 | |
0 to 2.0 |
Molybdenum (Mo), % | 0 | |
1.0 to 1.5 |
Nickel (Ni), % | 0 | |
24 to 27 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.3 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
1.9 to 2.4 |
Vanadium (V), % | 0 | |
0.1 to 0.5 |