MakeItFrom.com
Menu (ESC)

EN 1.5535 Steel vs. Automotive Malleable Cast Iron

Both EN 1.5535 steel and automotive malleable cast iron are iron alloys. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5535 steel and the bottom bar is automotive malleable cast iron.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 180
130 to 290
Elastic (Young's, Tensile) Modulus, GPa 190
180
Elongation at Break, % 11 to 22
1.0 to 10
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
70
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
350 to 720
Tensile Strength: Yield (Proof), MPa 300 to 500
220 to 590

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
41
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
1.9
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 19
20
Embodied Water, L/kg 48
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
6.8 to 30
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 680
130 to 950
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16 to 53
13 to 26
Strength to Weight: Bending, points 17 to 37
14 to 24
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 13 to 44
9.9 to 21

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.2 to 0.25
2.2 to 2.9
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 97.6 to 98.9
93.6 to 96.7
Manganese (Mn), % 0.9 to 1.2
0.15 to 1.3
Phosphorus (P), % 0 to 0.025
0.020 to 0.15
Silicon (Si), % 0 to 0.3
0.9 to 1.9
Sulfur (S), % 0 to 0.025
0.020 to 0.2