MakeItFrom.com
Menu (ESC)

EN 1.5535 Steel vs. EN 1.8888 Steel

Both EN 1.5535 steel and EN 1.8888 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.5535 steel and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 180
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 22
16
Fatigue Strength, MPa 210 to 320
470
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 320 to 370
510
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
830
Tensile Strength: Yield (Proof), MPa 300 to 500
720

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.9
Embodied Energy, MJ/kg 19
26
Embodied Water, L/kg 48
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 680
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 53
29
Strength to Weight: Bending, points 17 to 37
25
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 13 to 44
24

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0 to 0.0050
Carbon (C), % 0.2 to 0.25
0 to 0.2
Chromium (Cr), % 0 to 0.3
0 to 1.5
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 97.6 to 98.9
91.9 to 100
Manganese (Mn), % 0.9 to 1.2
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.8
Sulfur (S), % 0 to 0.025
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15