MakeItFrom.com
Menu (ESC)

EN 1.5535 Steel vs. Grade 27 Titanium

EN 1.5535 steel belongs to the iron alloys classification, while grade 27 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.5535 steel and the bottom bar is grade 27 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 22
27
Fatigue Strength, MPa 210 to 320
170
Poisson's Ratio 0.29
0.32
Reduction in Area, % 62 to 72
34
Shear Modulus, GPa 73
41
Shear Strength, MPa 320 to 370
180
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
270
Tensile Strength: Yield (Proof), MPa 300 to 500
230

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 50
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
33
Embodied Energy, MJ/kg 19
530
Embodied Water, L/kg 48
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
70
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 680
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 53
17
Strength to Weight: Bending, points 17 to 37
21
Thermal Diffusivity, mm2/s 13
8.8
Thermal Shock Resistance, points 13 to 44
21

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.2 to 0.25
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.6 to 98.9
0 to 0.2
Manganese (Mn), % 0.9 to 1.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.025
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
99 to 99.92
Residuals, % 0
0 to 0.4