MakeItFrom.com
Menu (ESC)

EN 1.5535 Steel vs. C86200 Bronze

EN 1.5535 steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5535 steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 22
21
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
710
Tensile Strength: Yield (Proof), MPa 300 to 500
350

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 50
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
49
Embodied Water, L/kg 48
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 680
540
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 16 to 53
25
Strength to Weight: Bending, points 17 to 37
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 13 to 44
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.2 to 0.25
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
60 to 66
Iron (Fe), % 97.6 to 98.9
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.9 to 1.2
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0