MakeItFrom.com
Menu (ESC)

EN 1.5636 Steel vs. EN 1.0116 Steel

Both EN 1.5636 steel and EN 1.0116 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5636 steel and the bottom bar is EN 1.0116 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
23
Fatigue Strength, MPa 230
140
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 560
380
Tensile Strength: Yield (Proof), MPa 310
200

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
2.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 23
19
Embodied Water, L/kg 52
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
72
Resilience: Unit (Modulus of Resilience), kJ/m3 260
110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
13
Strength to Weight: Bending, points 19
15
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 16
12

Alloy Composition

Carbon (C), % 0.060 to 0.12
0 to 0.17
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 97.4
97.1 to 100
Manganese (Mn), % 0.5 to 0.8
0 to 1.4
Molybdenum (Mo), % 0 to 0.2
0 to 0.080
Nickel (Ni), % 2.0 to 3.0
0 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.55
Sulfur (S), % 0 to 0.015
0 to 0.035
Vanadium (V), % 0 to 0.050
0