MakeItFrom.com
Menu (ESC)

EN 1.5636 Steel vs. SAE-AISI 9255 Steel

Both EN 1.5636 steel and SAE-AISI 9255 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.5636 steel and the bottom bar is SAE-AISI 9255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
21
Fatigue Strength, MPa 230
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 560
680
Tensile Strength: Yield (Proof), MPa 310
390

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
2.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 23
20
Embodied Water, L/kg 52
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0.060 to 0.12
0.51 to 0.59
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 97.4
96.2 to 97
Manganese (Mn), % 0.5 to 0.8
0.7 to 1.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 2.0 to 3.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.6
1.8 to 2.2
Sulfur (S), % 0 to 0.015
0 to 0.040
Vanadium (V), % 0 to 0.050
0